Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 432-436, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565508

RESUMO

OBJECTIVE: To retrospectively analyze the clinical phenotype and pathogenic variants in patients with Progressive myoclonus epilepsy (PME). METHODS: Clinical data and results of genetic testing for 11 patients diagnosed with PME at the Department of Neurology, the First Affiliated Hospital of Zhejiang University School of Medicine from June 2017 to December 2022 were collected and analyzed. RESULTS: All of the patients, including 4 males and 7 females, had predominant action myoclonus. Three patients had myoclonus as the initial manifestation, whilst eight were diagnosed through genetic testing, including three cases with NEU1 gene variants, two with EPM2A gene variants (1 was novel), one with MT-TK gene variant, one with ATN1 gene variant, and one with CSTB gene variant. No pathogenic variant was identified in the remaining three cases. Among the eight patients with a genetic diagnosis, three were diagnosed with sialidosis, two with Lafora disease, one with Dentatorubral-pallidoluysian atrophy (DRPLA), one with Unverricht-Lundborg disease (ULD), and one with Myoclonic epilepsy with ragging red fibers (MERRF). CONCLUSION: Compared with pediatric patients, adult patients with PME represent a distinct subtype with slower progression and milder cognitive impairment.


Assuntos
Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Masculino , Adulto , Feminino , Humanos , Criança , Síndrome de Unverricht-Lundborg/genética , Estudos Retrospectivos , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas/genética , Testes Genéticos
2.
Genes (Basel) ; 15(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397161

RESUMO

The progressive myoclonus epilepsies (PME) are a diverse group of disorders that feature both myoclonus and seizures that worsen gradually over a variable timeframe. While each of the disorders is individually rare, they collectively make up a non-trivial portion of the complex epilepsy and myoclonus cases that are seen in tertiary care centers. The last decade has seen substantial progress in our understanding of the pathophysiology, diagnosis, prognosis, and, in select disorders, therapies of these diseases. In this scoping review, we examine English language publications from the past decade that address diagnostic, phenotypic, and therapeutic advances in all PMEs. We then highlight the major lessons that have been learned and point out avenues for future investigation that seem promising.


Assuntos
Epilepsias Mioclônicas Progressivas , Mioclonia , Humanos , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/terapia
3.
Cell Rep Med ; 5(2): 101425, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382469

RESUMO

Progressive myoclonus epilepsy type 7, a debilitating neurological disorder, is caused by a loss-of-function mutation in the KV3.1 channel. Exciting work by Feng et al.1 utilizes a new knockin mouse model to identify a potential therapeutic intervention.


Assuntos
Epilepsias Mioclônicas Progressivas , Animais , Camundongos , Epilepsias Mioclônicas Progressivas/genética , Mutação
4.
Cell Rep Med ; 5(2): 101389, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266642

RESUMO

The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.


Assuntos
Epilepsias Mioclônicas Progressivas , Camundongos , Animais , Epilepsias Mioclônicas Progressivas/genética , Ataxia/genética , Convulsões/genética , Neurônios , Encéfalo
5.
Epilepsia ; 65(3): 709-724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231304

RESUMO

OBJECTIVE: KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS: Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS: Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE: This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.


Assuntos
Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Eletroencefalografia , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Convulsões
6.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247861

RESUMO

Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder, also known as Unverricht-Lundborg disease (ULD). EPM1 patients suffer from photo-sensitive seizures, stimulus-sensitive myoclonus, nocturnal myoclonic seizures, ataxia and dysarthria. In addition, cerebral ataxia and impaired GABAergic inhibition are typically present. EPM1 is caused by mutations in the Cystatin B gene (CSTB). The CSTB protein functions as an intracellular thiol protease inhibitor and inhibits Cathepsin function. It also plays a crucial role in brain development and regulates various functions in neurons beyond maintaining cellular proteostasis. These include controlling cell proliferation and differentiation, synaptic functions and protection against oxidative stress, likely through regulation of mitochondrial function. Depending on the differentiation stage and status of neurons, the protein localizes either to the cytoplasm, nucleus, lysosomes or mitochondria. Further, CSTB can also be secreted to the extracellular matrix for interneuron rearrangement and migration. In this review, we will review the various functions of CSTB in the brain and discuss the putative pathophysiological mechanism underlying EPM1.


Assuntos
Cistatina B , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Humanos , Ataxia , Encéfalo/patologia , Cistatina B/genética , Epilepsias Mioclônicas Progressivas/genética , Fatores de Transcrição
7.
Eur J Med Genet ; 67: 104895, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070824

RESUMO

INTRODUCTION: NGLY1-associated congenital disorder of deglycosylation (CDDG1: OMIM #615273) is a rare autosomal recessive disorder caused by a functional impairment of endoplasmic reticulum in degradation of glycoproteins. Neurocognitive dysfunctions have been documented in patients with CDDG1; however, deteriorating phenotypes of affected individuals remain elusive. CASE PRESENTATION: A Japanese boy with delayed psychomotor development showed ataxic movements from age 5 years and myoclonic seizures from age 12 years. Appetite loss, motor and cognitive decline became evident at age 12 years. Electrophysiological studies identified paroxysmal discharges on myoclonic seizure and a giant somatosensory evoked potential. Perampanel was effective for controlling myoclonic seizures. Exome sequencing revealed that the patient carried compound heterozygous variants in NGLY1, NM_018297.4: c.857G > A and c.-17_12del, which were inherited from mother and father, respectively. A literature review confirmed that myoclonic seizures were observed in 28.5% of patients with epilepsy. No other patients had progressive myoclonic epilepsy or cognitive decline in association with loss-of-function variations in NGLY1. CONCLUSION: Our data provides evidence that a group of patients with CDDG1 manifest slowly progressive myoclonic epilepsy and cognitive decline during the long-term clinical course.


Assuntos
Defeitos Congênitos da Glicosilação , Epilepsias Mioclônicas , Epilepsias Mioclônicas Progressivas , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Masculino , Humanos , Criança , Pré-Escolar , Mutação , Epilepsias Mioclônicas Progressivas/genética , Fenótipo , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Convulsões
8.
Stem Cell Res ; 73: 103248, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951142

RESUMO

Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder caused by mutations in the cystatin B gene (CSTB). Affected individual's manifest stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. In this study, we have generated iPSCs from an EPM1 patient's skin fibroblasts with Sendai virus mediated transgene delivery. The iPSCs retained the patient specific promoter region expansion mutation, expressed pluripotency markers, differentiated into all three germ layers, and presented a normal karyotype. The line can in future be used to develop an in-vitro model for EPM1 and may help in understanding disease mechanisms at cellular and molecular level.


Assuntos
Cistatinas , Células-Tronco Pluripotentes Induzidas , Epilepsias Mioclônicas Progressivas , Síndrome de Unverricht-Lundborg , Humanos , Cistatina B , Cistatinas/genética , Cistatinas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Unverricht-Lundborg/genética , Epilepsias Mioclônicas Progressivas/genética
9.
Genes (Basel) ; 14(10)2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895210

RESUMO

Biallelic variants in the Golgi SNAP receptor complex member 2 gene (GOSR2) have been reported in progressive myoclonus epilepsy with neurodegeneration. Typical clinical features include ataxia and areflexia during early childhood, followed by seizures, scoliosis, dysarthria, and myoclonus. Here, we report two novel patients from unrelated families with a GOSR2-related disorder and novel genetic and clinical findings. The first patient, a male compound heterozygous for the GOSR2 splice site variant c.336+1G>A and the novel c.364G>A,p.Glu122Lys missense variant showed global developmental delay and seizures at the age of 2 years, followed by myoclonus at the age of 8 years with partial response to clonazepam. The second patient, a female homozygous for the GOSR2 founder variant p.Gly144Trp, showed only mild fine motor developmental delay and generalized tonic-clonic seizures triggered by infections during adolescence, with seizure remission on levetiracetam. The associated movement disorder progressed atypically slowly during adolescence compared to its usual speed, from initial intention tremor and myoclonus to ataxia, hyporeflexia, dysmetria, and dystonia. These findings expand the genotype-phenotype spectrum of GOSR2-related disorders and suggest that GOSR2 should be included in the consideration of monogenetic causes of dystonia, global developmental delay, and seizures.


Assuntos
Distonia , Distúrbios Distônicos , Epilepsias Mioclônicas Progressivas , Mioclonia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Ataxia/genética , Mutação , Epilepsias Mioclônicas Progressivas/genética , Proteínas Qb-SNARE/genética , Convulsões
10.
Neurobiol Dis ; 185: 106258, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573956

RESUMO

The progressive myoclonic epilepsies (PMEs) are a group of rare neurodegenerative diseases characterized by myoclonus, epileptic seizures, and progressive neurological deterioration with cerebellar involvement. They include storage diseases like Gaucher disease, Lafora disease, and forms of neuronal ceroid lipofuscinosis (NCL). To date, 13 NCLs have been reported (CLN1-CLN8, CLN10-CLN14), associated with mutations in different genes. These forms, which affect both children and adults, are characterized by seizures, cognitive and motor impairments, and in most cases visual loss. In NCLs, as in other PMEs, central nervous system (CNS) neurodegeneration is widespread and involves different subpopulations of neurons. One of the most affected regions is the cerebellar cortex, where motor and non-motor information is processed and transmitted to deep cerebellar nuclei through the axons of Purkinje cells (PCs). PCs, being GABAergic, have an inhibitory effect on their target neurons, and provide the only inhibitory output of the cerebellum. Degeneration of PCs has been linked to motor impairments and epileptic seizures. Seizures occur when some insult upsets the normal balance in the CNS between excitatory and inhibitory impulses, causing hyperexcitability. Here we review the role of PCs in epilepsy onset and progression following their PME-related loss. In particular, we focus on the involvement of PCs in seizure phenotype in NCLs, highlighting findings from case reports and studies of animal models in which epilepsy can be linked to PC loss.


Assuntos
Epilepsia , Epilepsias Mioclônicas Progressivas , Lipofuscinoses Ceroides Neuronais , Animais , Lipofuscinoses Ceroides Neuronais/genética , Células de Purkinje , Epilepsias Mioclônicas Progressivas/genética , Convulsões
12.
Ital J Pediatr ; 49(1): 64, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280710

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) could be classified as 5q and non-5q, based on the chromosomal location of causative genes. A rare form of non-5q SMA is an autosomal-recessive condition called spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME), phenotypically characterized by myoclonic and generalized seizures with progressive neurological deterioration. SMA-PME is a clinically heterogeneous disorder that arises from biallelic pathogenic variants in ASAH1 gene. METHODS: Following clinical and primary laboratory assessments, whole-exome sequencing was performed to detect the disease-causing variants in three cases of SMA-PME from different families. Also, Multiplex ligation-dependent probe amplification (MLPA) was employed for determining the copy numbers of SMN1 and SMN2 genes to rule out 5q SMA. RESULTS: Exome sequencing revealed two different homozygous missense mutations (c.109 C > A [p.Pro37Thr] or c.125 C > T [p.Thr42Met]) in exon 2 of the ASAH1 gene in the affected members of the families. Sanger sequencing of the other family members showed the expected heterozygous carriers. In addition, no clinically relevant variant was identified in patients by MLPA. CONCLUSION: This study describes two different ASAH1 mutations and the clinical picture of 3 SMA-PME patients. In addition, previously reported mutations have been reviewed. This study could help to fortify the database of this rare disease with more clinical and genomic data.


Assuntos
Atrofia Muscular Espinal , Epilepsias Mioclônicas Progressivas , Humanos , Mutação , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Epilepsias Mioclônicas Progressivas/genética , Mutação de Sentido Incorreto
13.
Clin Neurophysiol ; 151: 74-82, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216715

RESUMO

OBJECTIVE: Familial Adult Myoclonic Epilepsy (FAME) presents with action-activated myoclonus, often associated with epilepsy, sharing various features with Progressive Myoclonic Epilepsy (PMEs), but with slower course and limited motor disability. We aimed our study to identify measures suitable to explain the different severity of FAME2 compared to EPM1, the most common PME, and to detect the signature of the distinctive brain networks. METHODS: We analyzed the EEG-EMG coherence (CMC) during segmental motor activity and indexes of connectivity in the two patient groups, and in healthy subjects (HS). We also investigated the regional and global properties of the network. RESULTS: In FAME2, differently from EPM1, we found a well-localized distribution of beta-CMC and increased betweenness-centrality (BC) on the sensorimotor region contralateral to the activated hand. In both patient groups, compared to HS, there was a decline in the network connectivity indexes in the beta and gamma band, which was more obvious in FAME2. CONCLUSIONS: In FAME2, better localized CMC and increased BC in comparison with EPM1 patients could counteract the severity and the spreading of the myoclonus. Decreased indexes of cortical integration were more severe in FAME2. SIGNIFICANCE: Our measures correlated with different motor disabilities and identified distinctive brain network impairments.


Assuntos
Pessoas com Deficiência , Epilepsias Mioclônicas , Transtornos Motores , Epilepsias Mioclônicas Progressivas , Mioclonia , Síndrome de Unverricht-Lundborg , Humanos , Adulto , Eletroencefalografia , Eletromiografia , Epilepsias Mioclônicas Progressivas/genética , Encéfalo
14.
Neurol Sci ; 44(10): 3495-3498, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249665

RESUMO

BACKGROUND: Variants of the NUS1 gene have been associated with an extensive spectrum of phenotypes, including epilepsy, intellectual disability, cerebellar ataxia, Parkinson's disease, dystonia, and congenital disorder of glycosylation. It is rarely reported in progressive myoclonus epilepsy (PME). METHODS AND RESULTS: Herein, we report the case of PME caused by a novel de novo NUS1 missense variant (c.302T>A, p.Met101Lys). In addition, we reviewed the current literature of NUS1-associated PME. At present, five patients with NUS1 variants and PME have been reported in the literature. Due to limited cases reported, the relationship between NUS1 variants and PME is not well-established. CONCLUSIONS: Our case provides further evidence of the role of NUS1 variants in PME. These findings expand the clinical phenotypes of NUS1 variants, which should be included in the PME genetic screening panel.


Assuntos
Epilepsias Mioclônicas Progressivas , Humanos , População do Leste Asiático/genética , Mutação de Sentido Incorreto , Epilepsias Mioclônicas Progressivas/genética , Mioclonia/genética , Receptores de Superfície Celular
15.
Acta Neurol Belg ; 123(4): 1505-1510, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243799

RESUMO

OBJECTIVE: To describe the clinical, radiological, and genetic characteristics of a Chinese family with dentatorubropallidoluysian atrophy (DRPLA). Explore the distribution of CAG repeat size to the clinical features of patients. METHODS: We collected the clinical symptoms and DNA analysis for the DRPLA gene was performed on the family members. DRPLA patients reported in the literature were reviewed to analyze the association between CAG repeat size and clinical features. RESULTS: Six family members were confirmed by genetic analysis. The number of CAG repeat in the proband, her sister, her grandmother, her father, her uncle, and her cousin, was determined respectively as 63, 75, 50, 50, 50, 54. In our family, the sister of the proband had the earliest onset age and the most severe clinical symptoms, followed by the proband, and other family members showed no obvious clinical symptoms. Consistent with the conclusion of previous studies, the more repeats CAG, the earlier the age of onset and the severer phenotypes are. CONCLUSION: We found six family members have CAG repeat expansion in the DRPLA gene on chromosome 12p13. Even in the same family, patients have different clinical presentations. The size of CAG repeats is negatively correlated with the age of onset and positively correlated with symptom severity. When the number of repeats is ≥ 63, the age at onset is < 21 years old, and obvious clinical symptoms generally appear. It seems to say the more repeats CAG, the earlier the age of onset and the severer phenotypes are. LIMITATIONS: With a small number of cases in our family, the conclusion that the more CAG repeats, the earlier the onset and the more severe the clinical symptoms cannot be fully proved.


Assuntos
População do Leste Asiático , Epilepsias Mioclônicas Progressivas , Repetições de Trinucleotídeos , Feminino , Humanos , População do Leste Asiático/genética , Fenótipo , Repetições de Trinucleotídeos/genética , Epilepsias Mioclônicas Progressivas/genética , Masculino
16.
Commun Biol ; 6(1): 560, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231125

RESUMO

Mutations in ASAH1 have been linked to two allegedly distinct disorders: Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME). We have previously reported FD-like phenotypes in mice harboring a single amino acid substitution in acid ceramidase (ACDase), P361R, known to be pathogenic in humans (P361R-Farber). Here we describe a mouse model with an SMA-PME-like phenotype (P361R-SMA). P361R-SMA mice live 2-3-times longer than P361R-Farber mice and have different phenotypes including progressive ataxia and bladder dysfunction, which suggests neurological dysfunction. We found profound demyelination, loss of axons, and altered sphingolipid levels in P361R-SMA spinal cords; severe pathology was restricted to the white matter. Our model can serve as a tool to study the pathological effects of ACDase deficiency on the central nervous system and to evaluate potential therapies for SMA-PME.


Assuntos
Lipogranulomatose de Farber , Atrofia Muscular Espinal , Epilepsias Mioclônicas Progressivas , Humanos , Camundongos , Animais , Lipogranulomatose de Farber/genética , Lipogranulomatose de Farber/metabolismo , Lipogranulomatose de Farber/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Esfingolipídeos/metabolismo , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/patologia , Fenótipo
17.
Epilepsia ; 64(8): e170-e176, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114479

RESUMO

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Epilepsias Mioclônicas Progressivas , Mioclonia , Humanos , Criança , Mutação , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas/patologia , Família , Proteínas de Transporte/genética , Proteínas Nucleares/genética
18.
Epilepsia ; 64 Suppl 1: S52-S57, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36751956

RESUMO

OBJECTIVE: Familial adult myoclonic epilepsy (FAME) is an under-recognized disorder characterized by cortical myoclonus, generalized tonic-clonic seizures, and additional clinical symptoms, which vary depending on the FAME subtype. FAME is caused by pentanucleotide repeat expansions of intronic TTTCA/TTTTA in different genes. FAME should be distinguished from a range of differential diagnoses. METHODS: The differential diagnoses and frequent presentations leading to misdiagnosis of FAME were investigated from the available literature and reported based on an expert opinion survey. RESULTS: The phenotypic features of FAME, including generalized tonic-clonic and myoclonic seizures, are also seen in other epilepsy syndromes, such as juvenile myoclonic epilepsy, with a resultant risk of misdiagnosis and lack of identification of the underlying cause. Cortical myoclonus may mimic essential tremor or drug-induced tremor. In younger individuals, the differential diagnosis includes progressive myoclonus epilepsies (PMEs), such as Unverricht-Lundborg disease, whereas, in adulthood, late-onset variants of PMEs, such as sialidoses, myoclonus epilepsy, and ataxia due to potassium channel pathogenic variants should be considered. PMEs may also be suggested by cognitive impairment, cerebellar signs, or psychiatric disorders. Electroencephalography (EEG) may show similarities to other idiopathic generalized epilepsies or PMEs, with generalized spike-wave activity. Signs of cortical hyperexcitability may be seen, such as an increased amplitude of somatosensory evoked potentials or enhanced cortical reflex to sensory stimuli, together with the neurophysiological pattern of the movement disorder. SIGNIFICANCE: Recognition of FAME will inform prognostic and genetic counseling and diagnosis of the insidious progression, which may occur in older individuals who show mild cognitive deterioration. Distinguishing FAME from other disorders in individuals or families with this constellation of symptoms is essential to allow the identification of underlying etiology.


Assuntos
Epilepsias Mioclônicas , Epilepsia Generalizada , Epilepsias Mioclônicas Progressivas , Epilepsia Mioclônica Juvenil , Mioclonia , Humanos , Adulto , Idoso , Diagnóstico Diferencial , Mioclonia/diagnóstico , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/diagnóstico , Eletroencefalografia , Epilepsias Mioclônicas Progressivas/diagnóstico , Epilepsias Mioclônicas Progressivas/genética , Epilepsia Mioclônica Juvenil/diagnóstico , Epilepsia Mioclônica Juvenil/genética , Convulsões/diagnóstico
19.
Biomolecules ; 13(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36830643

RESUMO

Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.


Assuntos
Lipogranulomatose de Farber , Atrofia Muscular Espinal , Epilepsias Mioclônicas Progressivas , Camundongos , Animais , Humanos , Lipogranulomatose de Farber/genética , Ceramidas , Epilepsias Mioclônicas Progressivas/genética , Atrofia Muscular Espinal/genética , Mutação
20.
Mov Disord ; 38(4): 526-536, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809552

RESUMO

Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare, incurable genetic disease that belongs to the group of polyglutamine (polyQ) diseases. DRPLA is the most common in the Japanese population; however, its global prevalence is also increasing due to better clinical recognition. It is characterized by cerebellar ataxia, myoclonus, epilepsy, dementia, and chorea. DRPLA is caused by dynamic mutation of CAG repeat expansion in ATN1 gene encoding the atrophin-1 protein. In the cascade of molecular disturbances, the pathological form of atrophin-1 is the initial factor, which has not been precisely characterized so far. Reports indicate that DRPLA is associated with disrupted protein-protein interactions (in which an expanded polyQ tract plays a crucial role), as well as gene expression deregulation. There is a great need to design efficient therapy that would address the underlying neurodegenerative process and thus prevent or alleviate DRPLA symptoms. An in-depth understanding of the normal atrophin-1 function and mutant atrophin-1 dysfunction is crucial for this purpose. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Epilepsias Mioclônicas Progressivas , Humanos , Atrofia , Ataxia Cerebelar/genética , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...